Свойства суммы корней. Арифметический квадратный корень и его свойства

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями - это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да...

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b < 0. .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при а ≥ 0 и b ≥ 0. если же а < 0, то .

Урок и презентация на тему:
"Свойства квадратного корня. Формулы. Примеры решений, задачи с ответами"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Интерактивное учебное пособие "Геометрия за 10 минут" для 8 класса
Образовательный комплекс "1С: Школа. Геометрия, 8 класс"

Свойства квадратного корня

Мы продолжаем изучать корни квадратные . Сегодня рассмотрим основные свойства корней. Все основные свойства интуитивно понятны и согласуются со всеми операциями, которые мы проводили раньше.

Свойство 1. Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел: $\sqrt{a*b}=\sqrt{a}*\sqrt{b}$.

Любые свойства принято доказывать, давайте это и сделаем.
Пусть $\sqrt{a*b}=x$, $\sqrt{a}=y$, $\sqrt{b}=z$. Тогда нам доказать, что $x=y*z$.
Давайте каждое выражение возведем в квадрат.
Если $\sqrt{a*b}=x$, то $a*b=x^2$.
Если $\sqrt{a}=y$, $\sqrt{b}=z$, то возведя оба выражения в квадрат, получим: $a=y^2$, $b=z^2$.
$a*b=x^2=y^2*z^2$, то есть $x^2=(y*z)^2$. Если квадраты двух неотрицательных чисел равны, то значит и сами числа равны, что и требовалось доказать.

Из нашего свойства следует, что, например, $\sqrt{5}*\sqrt{3}=\sqrt{15}$.

Замечание 1. Свойство справедливо и для случая, когда под корнем более двух неотрицательных множителей.
Свойство 2. Если $а≥0$ и $b>0$, то справедливо следующее равенство: $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

То есть корень из частного равен частному корней.
Доказательство.
Воспользуемся таблицей и кратко докажем наше свойство.

Примеры использования свойств квадратных корней

Пример 1.
Вычислить: $\sqrt{81*25*121}$.

Решение.
Конечно, мы можем взять калькулятор, перемножить все числа под корнем и выполнить операцию извлечения корня квадратного. А если под рукой нет калькулятора, как быть тогда?
$\sqrt{81*25*121}=\sqrt{81}*\sqrt{25}*\sqrt{121}=9*5*11=495$.
Ответ: 495.

Пример 2. Вычислить: $\sqrt{11\frac{14}{25}}$.

Решение.
Подкоренное число представим в виде неправильной дроби: $11\frac{14}{25}=\frac{11*25+14}{25}=\frac{275+14}{25}=\frac{289}{25}$.
Воспользуемся свойством 2.
$\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}=3\frac{2}{5}=3,4$.
Ответ: 3,4.

Пример 3.
Вычислить: $\sqrt{40^2-24^2}$.

Решение.
Мы можем вычислить наше выражение напрямую, но практически всегда его можно упростить. Давайте попробуем это сделать.
$40^2-24^2=(40-24)(40+24)=16*64$.
Итак, $\sqrt{40^2-24^2}=\sqrt{16*64}=\sqrt{16}*\sqrt{64}=4*8=32$.
Ответ: 32.

Ребята, обратите внимание, что для операций сложения и вычитания подкоренных выражений ни каких формул не существует и представленные ниже выражения не верны.
$\sqrt{a+b}≠\sqrt{a}+\sqrt{b}$.
$\sqrt{a-b}≠\sqrt{a}-\sqrt{b}$.

Пример 4.
Вычислить: а) $\sqrt{32}*\sqrt{8}$; б) $\frac{\sqrt{32}}{\sqrt{8}}$.
Решение.
Свойства, представленные выше, работают как и слева на право, так и в обратном порядке, то есть:
$\sqrt{a}*\sqrt{b}=\sqrt{a*b}$.
$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$.
Используя это, решим наш пример.
а) $\sqrt{32}*\sqrt{8}=\sqrt{32*8}=\sqrt{256}=16.$

Б) $\frac{\sqrt{32}}{\sqrt{8}}=\sqrt{\frac{32}{8}}=\sqrt{4}=2$.

Ответ: а) 16; б) 2.

Свойство 3. Если $а≥0$ и n – натуральное число, то выполняется равенство: $\sqrt{a^{2n}}=a^n$.

Например. $\sqrt{a^{16}}=a^8$, $\sqrt{a^{24}}=a^{12}$ и так далее.

Пример 5.
Вычислить: $\sqrt{129600}$.

Решение.
Представленное нам число довольно таки большое, давайте разложим его на простые множители.
Мы получили: $129600=5^2*2^6*3^4$ или $\sqrt{129600}=\sqrt{5^2*2^6*3^4}=5*2^3*3^2=5*8*9=360$.
Ответ: 360.

Задачи для самостоятельного решения

1. Вычислить: $\sqrt{144*36*64}$.
2. Вычислить: $\sqrt{8\frac{1}{36}}$.
3. Вычислить: $\sqrt{52^2-48^2}$.
4. Вычислить:
а) $\sqrt{128*\sqrt{8}}$;
б) $\frac{\sqrt{128}}{\sqrt{8}}$.

Свойства квадратных корней

До сих пор мы осуществляли над числами пять арифметических операций: сложение, вычитание, умножение , деление и возведение в степень, причем при вычислениях активно использовали различные свойства этих операций, например а + b = b + а, аn-bn = (аb)n и т. д.

В этой главе введена новая операция - извлечение квадратного корня из неотрицательного числа. Чтобы успешно ее использовать, нужно познакомиться со свойствами этой операции, что мы и сделаем в настоящем параграфе.

Доказательство. Введем следующие обозначения:https://pandia.ru/text/78/290/images/image005_28.jpg" alt="Равенство" width="120" height="25 id="> .

Следующую теорему мы именно так и оформим.

(Краткая формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней или корень из частного равен частному от корней.)

На этот раз мы приведем только краткую запись доказательства, а вы попробуйте сделать соответствующие комментарии, аналогичные тем, что составили суть доказательства теоремы 1.

Замечание 3. Конечно, этот пример можно решить по-другому, особенно если у вас под рукой микрокалькулятор: перемножить числа 36, 64, 9, а затем извлечь квадратный корень из полученного произведения. Однако, согласитесь, предложенное выше решение выглядит более культурно.

Замечание 4. При первом способе мы проводили вычисления «в лоб». Второй способ изящнее:
мы применили формулу а2 - b2 = (а - b) (а + b) и воспользовались свойством квадратных корней.

Замечание 5. Некоторые «горячие головы» предлагают иногда такое «решение» примера 3:

Это, конечно, неверно: вы видите - результат получился не такой, как у нас в примере 3. Дело в том, что нет свойства https://pandia.ru/text/78/290/images/image014_6.jpg" alt="Задание" width="148" height="26 id="> Имеются только свойства, касающиеся умножения и деления квадратных корней. Будьте внимательны и осторожны, не принимайте желаемое за действительное.

Завершая параграф, отметим еще одно достаточно простое и в то же время важное свойство:
если a > 0 и n - натуральное число , то

Преобразование выражений, содержащих операцию извлечения квадратного корня

До сих пор мы с вами выполняли преобразования толькорациональных выражений , используя для этого правила действий над многочленами и алгебраическими дробями, формулы сокращенного умножения и т. д. В этой главе мы ввели новую операцию - операцию извлечения квадратного корня; мы установили, что

где, напомним, a, b - неотрицательные числа.

Используя эти формулы , можно выполнять различные преобразования выражений, содержащих операцию извлечения квадратного корня. Рассмотрим несколько примеров, причем во всех примерах будем предполагать, что переменные принимают только неотрицательные значения.

Пример 3. Внести множитель под знак квадратного корня:

Пример 6 . Упростить выражение Решение. Выполним последовательные преобразования:

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter