Пропускает ли полиэтиленовая пленка ультрафиолетовые лучи. Пропускает ли стекло ультрафиолет. Кто прав: водитель авто или школьный учебник? Потенциальные угрозы от линолеума

Чтобы ответить на этот вопрос, разберемся с природой такого явления, как ультрафиолет, и с природой такого материала, как оргстекло.

Пока мы не подошли к подробным характеристикам, мы ответим на вопрос — Оргстекло пропускает ультрафиолет? Да пропускает!

Ультрафиолетовое излучение — это лучи, которые по длине волны располагаются сразу за видимым спектром. Диапазон длин волн для ультрафиолета составляет 10-400 нм. Диапазон 10-200 нм называют вакуумным или «дальним», так как лучи с такой длиной волны присутствуют исключительно в космическом пространстве и поглощаются атмосферой планеты. Оставшуюся часть диапазона называют «ближним» ультрафиолетом которые подразделяют 3 категории излучений:

  • длина волны 200-290 нм — коротковолновое;
  • длина волны 290-350 нм — средневолновое;
  • длина волны 350-400 нм — длинноволновое.

Каждый тип ультрафиолетового излучение производит различное воздействие на живые организмы. Коротковолновое — наиболее высокоэнергетичное излучение, повреждает биомолекулы, вызывает разрушение ДНК. Средневолновое — вызывает ожоги кожного покрова у человека, растения переносят кратковременное облучение без последствий, но при длительном происходит угнетение жизненных фенкций и гибель.

Длинноволновое — практически безвредно жизнедеятельности организма человека, безопасно и полезно для растений. Диапазон коротковолнового ультрафиолета и часть спектра средневолнового диапазона поглощает наша «защитная броня» — озоновый слой. До поверхности планеты, среды обитания живых существ и растений, добирается часть диапазона средневолнового излучения и весь длинноволновой диапазон, т.е. спектр полезных лучей и не вредящих при непродолжительном облучении.

Оргстекло — это химическая синтетическая полимерная структура метилметакрилата, представляет собой прозрачный пластик. Светопропускание несколько ниже чем у обыкновенного силикатного стекла, легко поддается механической обработке, небольшой вес. Оргстекло неустойчиво к воздействию некоторых растворителей — ацетона, бензола и спиртов. Производится на основе стандартного химического состава. Отличия марок и производителей заключаются в придании специфических свойств: ударопрочности, теплостойкости, защиты от УФ-излучения и т.д.

Стандартное оргстекло пропускает ультрафиолет. Его излучения и характеризуется коэффициентом пропускания:

  • не более 1%, для длины волны 350 нм;
  • не менее 70%, для длины волны 400нм.

Т.е. оргстекло пропускает только длинноволновое излучение, у самой границы диапазона длин волн, наиболее безопасное и наиболее полезное для живых организмов.

Стоит отметить, что у оргстекла невысокая устойчивость к механическому воздействию. Со временем, при попадании на него абразивных частиц, в процессе очистки поверхность повреждается, стекло приобретает матовость и снижает свою способность к пропусканию как видимого света, так и ультрафиолетового излучения.

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение – это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100–380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200–280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение – это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315–380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона – фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные – птицы, рептилии, а также насекомые, например пчелы, – могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультра-фиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая – в 2–3 раза выше, чем на севере Европы.

В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.

В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.

В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы – примерно 10 %, а для песка – от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов – животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека – это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2–3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: катарактой, дегенерацией макулы, птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.

Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета – прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831–2001 «Очки солнцезащитные. Общие технические требования», а в Европе – EN 1836: 2005 «Personal eye protection – Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831–2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3–8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280–315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3–0,8 %), а для УФ-A-излучения (315–380 нм) – не больше 0,5T (в зависимости от категории фильтра – от 40,0 до 1,5–4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с фотохромными линзами задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом – автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.

Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380–400 нм) возлагается на оптика-консультанта и мастера – сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы – УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм – оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов – спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.

Ольга Щербакова, Веко


В стране и за рубежом создано много видов защитной пленки для парников и теплиц. Давайте попробуем разобраться в этом многообразии.

Виды полимерной пленки

Полиэтиленовая пленка. В настоящее время в овощеводстве нашей страны широко применяется обычная нестабилизированная полиэтиленовая пленка (ГОСТ 10354-82, рецептура 10803-020). Получают ее из природного газа.

Полиэтиленовая пленка чуть-чуть синевата и имеет слегка матовый оттенок, высокоэластична. Прочность ее одинакова по длине и ширине и равна более 100 кг1см2. С понижением температуры прочность пленки возрастает.

В первый период эксплуатации она сохраняет свои качества при температуре -65град. Однако установлено, что у пленки, бывшей в эксплуатации, морозостойкость понижается и при температуре минус 5-10град. она становится хрупкой. Поэтому полиэтиленовую пленку, прослужившую лето, нельзя использовать для укрытия зимой или поздней осенью.

Полиэтиленовая пленка незначительно изменяет линейные размеры в зависимости от температуры, что позволяет крепить ее жестко к элементам конструкций.

Под действием ультрафиолетовых лучей и повышенной температуры пленка «стареет», и вследствие этого ухудшается ее прочность на разрыв, светопроницаемость и морозостойкость. При использовании пленки толщиной 0,05 мм в качестве экрана в остекленных теплицах она служит от 3 до 5 лет, в то время как аналогичная пленка, находясь под прямым воздействием ультрафиолетовых лучей, изнашивается в течение 3-4 месяцев.

Долговечность полиэтиленовой пленки зависит от толщины, условий эксплуатации и применяемых конструкций.

Более тонкая пленка дешевле, но для тоннельных укрытий она должна быть толщиной не менее 0,08-0,1, мм. В то же время считают, что использовать пленку толщиной более 0,15 мм для укрытий на необогреваемом грунте невыгодно.

Полиэтиленовую пленку выпускают в рулонах с шириной полотна (рукава) 1,2-3 м.

Полиэтиленовая пленка обычно пропускает 80-90 % солнечного света. Но в специальных конструкциях с пленкой, где меньше затеняющих переплетов, освещенность бывает даже выше, чем под стеклом.

Следует отметить, что используемая в овощеводстве полиэтиленовая пленка специально для этих целей не создавалась и, естественно, обладает существенными недостатками: коротким сроком службы (4-5 месяцев); гидрофобной поверхностью, снижающей поступление света в результате загрязнения и образования светоотражающего экрана за счет мелкокапельного водяного конденсата; высокой степенью прозрачности для инфракрасного излучения, что ухудшает тепловой режим в укрытиях ночью.

Для укрытий многократного использования лучше применять светостабилизированную полиэтиленовую пленку (ГОСТ 10354-83, рецептура 108-08 или 158-08). Стабилизация пленки достигается путем введения в ее состав веществ, препятствующих разрушению полимера под воздействием атмосферных условий. Срок службы этой пленки при непрерывной эксплуатации достигает одного года, а на тоннельных укрытиях она может использоваться 2-3 сезона. Внешне она не отличается от нестабилизированной и определить ее можно по этикетке на рулоне.

Ленинградское научно-производственное объединение «Пластполимер» и Агрофизический институт разработали рецепт получения новой гидрофильной пленки (ГОСТ 10354-73, рецептура 108-82). В состав этой пленки входят свето- и термостабилизаторы, которые повышают срок ее эксплуатации в 2-3 раза по сравнению с обычной. Поверхность пленки гидрофильная, она мало загрязняется, конденсат влаги образуется в виде сплошного слоя, что повышает светопроницаемость и устраняет «капель». Способность новой пленки пропускать инфракрасное (тепловое) излучение снижена с 80 до 30-35 %. В производственных испытаниях урожайность овощей в теплицах, покрытых гидрофильной пленкой, повышалась на 10-15 %.

Теплоудерживающая полиэтиленовая пленка (ГОСТ 10354-83, рецептура 108-143Г или 158-143Г) значительно меньше пропускает инфракрасные лучи, в результате температура под ней на 1,5-2град. выше, чем под обычной полиэтиленовой пленкой. Улучшенный тепловой режим под новой пленкой позволяет увеличить ранний урожай овощей. На изготовление теплоудерживающей пленки требуется меньше полиэтилена за счет наполнителя (каолина).

В настоящее время теплоудерживающую пленку промышленность выпускает под маркой «СИК».

Особыми свойствами обладает вспененная пленка, которая состоит из двух слоев: монолитного и вспененного. Она пропускает 70 % видимого спектра солнечных лучей в рассеянном виде, в результате температура воздуха под пленкой несколько уменьшается днем и поддерживается на более высоком уровне ночью. «Вспененная» пленка рекомендуется для укрытий тоннельного типа и парников, а также для вегетативного размножения растений. При ее изготовлении достигается экономия полиэтилена до 20 % за счет его вспенивания.

Полиэтиленовая фоторазрушаемая (ГОСТ 10354-82) пленка обладает свойством разрушаться после определенного срока эксплуатации. В зависимости от рецептуры эта пленка имеет следующие средние сроки начала разрушения:

рецептура 108-70 с радиационным облучением - 20 дней;

- « - 108-70 без облучения - 45 дней;

- « - 108-71 без облучения - 60 дней.

Фоторазрушаемую пленку рекомендуют применять для мульчирования и в качестве бескаркасных укрытий. Для этих целей ее изготавливают толщиной 0,04-0,06 мм, а перед применением перфорируют круглыми или щелевидными отверстиями.

Поливинилхлоридная пленка (ГОСТ 16272-79, рецепт С). По внешнему виду она напоминает целлофан. Поливинилхлоридная пленка отличается высокой прозрачностью, она пропускает до 90 % видимого света и около 80 % ультрафиолетовой радиации. В отличие от полиэтиленовой она почти не пропускает инфракрасных (тепловых) лучей. Благодаря этому ночью под укрытием поливинилхлоридной пленкой бывает теплее, чем под полиэтиленовой. Эта пленка отличается большой долговечностью в эксплуатации, достигающей 2-3 года. В то же время она в 2-3 раза дороже, чем полиэтиленовая. При этом необходимо учесть, что Поливинилхлоридная пленка отличается относительно низкой морозостойкостью (температура хрупкости -15 град.С), поэтому ее нельзя оставлять зимой на необогреваемых сооружениях.

Пленка полиэтиленовая черная (ГОСТ 10354-82 рецептура 108-157 или 158-157) за счет стабилизации сажей практически светонепроницаема уже при толщине 0,04 мм. Она предназначена для мульчирования почвы овощных и других культур. Позволяет улучшить гидротермический режим почвы в корнеобитаемом слое и подавляет сорную растительность, в результате увеличивается урожайность и сокращаются затраты труда по уходу.

Для мульчирования в течение одного сезона рекомендуют применять черную пленку толщиной 0,04-0,05 мм, в течение двух лет - толщиной 0,06-0,08 мм, трех-четырех - 0,1 - 0,12 мм.

На страницах данного информационного ресурса уже отмечалась необходимость защиты изделий из полиэтилена, в частности полуфабрикатов (полиэтиленовых стержней, листов, плит и т.д.) из полиэтилена различных марок, а также других материалов семейства полиолефины, от вредного воздействия УФ - излучения, при эксплуатации изделий на открытом воздухе.

Вредное воздействие УФ - излучения выражается в изменении цвета материала (выцветании), а также в изменении его механических свойств - материал становится хрупким и растрескивается, даже без механической нагрузки.

Следует отметить что эти процессы (выцветание и изменение механических свойств) не связаны между собой – выцветание характеризует, прежде всего, стойкость красителей, используемых при производстве материалов, и поэтому потеря оригинального цвета изделия далеко не всегда означает изменение механических свойств материала.

Как уже отмечалось выше, для придания стойкости полиолефинов к воздействию УФ - излучения в их состав в процессе производства вводят специальные УФ - стабилизаторы (HALS – ингибиторы).

В целом можно сказать, что устойчивость материала к воздействию УФ - излучению, и, следовательно, срок службы изделий, зависит от количества и эффективности используемых УФ - стабилизаторов, а также от интенсивности УФ - излучения – в более высоких широтах интенсивность УФ - излучения ниже, чем в более низких. Дополнительно интенсивность УФ – излучения может усиливать, например, его отражение от водной поверхности.

Сочетание стабилизаторов и красителей, вводимых в состав материала, также может оказывать значительное воздействие на срок службы изделий, например вводимый в состав изделий из полиэтилена краситель на основе сажи сам по себе является хорошим УФ – стабилизатором, поэтому срок службы изделий из полиэтилена черного цвета является наибольшим.

Ведущие производители инженерных термопластов регулярно проводят тестирование производимых материалов для определения влияния УФ – излучения на их свойства. В целом можно сказать, что целевым показателем срока, в течение которого не должно происходить значительного изменения свойств материалов является 10 лет.

Однако с учетом того, что как уже отмечалось выше, интенсивность УФ – излучения для разных климатических зон различна, для мест высокой интенсивностью излучения реально достижимая величина этого показателя может быть значительно ниже.

С другой стороны, для изделий, в состав которых введен краситель на основе сажи, срок эксплуатации может быть значительно выше – в среднем до 20 лет, без значительных изменений свойств материала.

Отдельно стоит остановиться на вопросе выцветания материала. Данных эффект может наблюдаться в большей или меньшей степени, в зависимости от интенсивности УФ – излучения и стойкости применяемых красителей. При этом, стойкость применяемых в последнее время органических красителей, как правило, значительно ниже стойкости красителей на основе тяжелых металлов (например, кадмия). Поэтому далеко не всегда более современные материалы являются более устойчивыми к выцветанию.

Были времена, когда загорелая кожа считалась признаком низкого происхождения, и знатные дамы старались защитить лицо и руки от солнечных лучей, дабы сохранить аристократическую бледность. Позже отношение к загару изменилось - он стал непременным атрибутом здорового и успешного человека. Сегодня, несмотря на неутихающие споры относительно пользы и вреда инсоляции, бронзовый оттенок кожи по-прежнему находится на пике популярности. Вот только возможность посещать пляж или солярий есть не у всех, и в связи с этим многие интересуются, можно ли загореть через оконное стекло, расположившись, например, на прогретой солнцем застекленной лоджии или мансарде. По информации сайта http://onwomen.ru

Наверное, каждый профессиональный водитель или просто человек, проводящий длительное время за рулем автомобиля, замечал, что кисти его рук и лицо со временем покрываются легким загаром. То же относится к офисным служащим, вынужденным сидеть всю рабочую смену у незанавешенного окна. На их лицах нередко можно обнаружить следы загара даже в зимний период. И если человек не является завсегдатаем соляриев и не совершает ежедневный променад по паркам, то иначе как загаром через стекло объяснить данное явление не получится. Так пропускает ли стекло ультрафиолет и можно ли загореть через окно? Давайте разбираться.

Природа загара

Для того чтобы ответить на вопрос, можно ли получить загар через обычное оконное стекло в машине или на лоджии, нужно разобраться в том, как именно происходит процесс потемнения кожных покровов и какие факторы оказывают на него влияние. В первую очередь следует отметить, что загар - это не что иное, как защитная реакция кожи на солнечное излучение. Под воздействием ультрафиолета клетки эпидермиса (меланоциты) начинают вырабатывать вещество меланин (темный пигмент), благодаря которому кожа и приобретает бронзовый оттенок. Чем выше концентрация меланина в верхних слоях дермы, тем интенсивнее получается загар.

Однако такую реакцию вызывают не все УФ-лучи, а только лежащие в очень узком диапазоне длин волн. Ультрафиолетовые лучи условно подразделяются на три типа:

  • А-лучи (длинноволновые) - практически не задерживаются атмосферой и беспрепятственно достигают земной поверхности. Такое излучение считается самым безопасным для человеческого организма, поскольку не активизирует синтез меланина. Все, на что оно способно, - это вызывать легкое потемнение кожных покровов, и то только при длительном воздействии. Однако при избыточной инсоляции длинноволновыми лучами происходит разрушение коллагеновых волокон и обезвоживание кожи, вследствие чего она начинает быстрее стареть. А у некоторых людей именно из-за А-лучей развивается аллергия на солнце. Длинноволновое излучение легко преодолевает толщу оконного стекла и приводит к постепенному выгоранию обоев, поверхности мебели и ковров, но полноценный загар с его помощью получить невозможно.
  • В-лучи (средневолновые) - задерживаются в атмосфере и достигают поверхности Земли лишь частично. Данный тип излучения оказывает непосредственное влияние на синтез меланина в клетках кожи и способствует появлению быстрого загара. А при его интенсивном воздействии на коже возникают ожоги различной степени. Сквозь обычное оконное стекло В-лучи проникать не способны.
  • С-лучи (коротковолновые) - представляют огромную опасность для всех живых организмов, но, к счастью, они практически полностью нейтрализуются атмосферой, не достигая поверхности Земли. Столкнуться с таким излучением можно только высоко в горах, однако и там его действие крайне ослаблено.Физики выделяют еще один тип ультрафиолетового излучения - экстремальный, для которого часто используется термин «вакуумный» ввиду того, что волны данного диапазона полностью поглощаются атмосферой Земли и не попадают на земную поверхность.

УФ представляет из себя излучение с длинами волн от 400 нм до 10 нм. Оно подразделяется на 4 диапазона:
А: 400-315 нм
В: 315-280 нм
С: 280-100 нм
Экстремальный: 121-10 нм.

Разные материалы имеют различную прозрачность для ультрафиолетовых лучей в зависимости от длины волны. Для экстремального диапазона непрозрачен даже воздух! Оконное стекло пропускает диапазон А, но не пропускает 3 других.
В этом можно убедиться, посмотрев график.

График проверяется простым экспериментом. Через обычное стекло толщиной 6 мм светим УФ светодиодом 365 нм на невидимую надпись, светящуюся только под ультрафиолетом.

Никакого заметного снижения яркости нет. Можно взять стекло толще в несколько раз, но надпись продолжит светиться, ультрафиолет очень хорошо проходит!

Пропускание стеклом 400-315 нм особенно важно учитывать при выборе качественных солнцезащитных очков, потому что через стеклянную линзу без защитного слоя проходит большая часть ультрафиолета, присутствующего на улице: в Москве от 301 нм, в умеренных широтах от 295 нм, в мире от 286 нм.

Если сказать, что воздух не пропускает ультрафиолет — это будет полуправда, также, как сказать, что стекло не пропускает УФ. Всегда следует упоминать конкретный диапазон ультрафиолета, чтобы не появлялись такие опасные полумифы.

  • Можно ли загореть через стекло?

    Можно ли получить загар через оконное стекло или нет, напрямую зависит от того, какими свойствами оно обладает. Дело в том, что стекла бывают разных видов, на каждый из которых УФ-лучи воздействуют по-разному. Так, органическое стекло отличается высокой пропускной способностью, что позволяет обеспечить прохождение всего спектра солнечного излучения. То же самое касается и кварцевого стекла, которое используется в лампах для солярия и в устройствах для обеззараживания помещений. Обычное же стекло, применяемое в жилых помещениях и автомобилях, пропускает исключительно длинноволновые лучи типа А, и загореть через него нельзя. Другое дело, если заменить его оргстеклом. Тогда можно будет принимать солнечные ванны и наслаждаться красивым загаром практически круглый год.

    Хотя иногда бывают случаи, когда человек проводит некоторое время под солнечными лучами, проходящими через окно, а потом обнаруживает на открытых участках кожи легкий загар. Разумеется, он находится в полной уверенности, что загорел именно путем инсоляции через стекло. Но это не совсем так. Существует весьма простое объяснение данному явлению: изменение оттенка в таком случае происходит в результате активизации небольшого количества остаточного, выработанного под воздействием ультрафиолета типа В пигмента (меланина), находящегося в клетках кожи. Как правило, такой «загар» носит временный характер, то есть быстро исчезает. Одним словом, для того чтобы приобрести полноценный загар, необходимо либо посещать солярий, либо регулярно принимать солнечные ванны, а добиться изменения естественного оттенка кожи в сторону более темного через обычное оконное или автомобильное стекло не получится.

  • Нужно ли защищаться?

Волноваться по поводу того, можно ли получить загар через стекло, надо только тем людям, которые имеют очень чувствительную кожу и предрасположенность к возникновению пигментных пятен.

Им рекомендуется постоянно пользоваться специальными средствами с минимальной степенью защиты (SPF). Наносить такую косметику следует главным образом на лицо, шею и зону декольте. Однако слишком активно защищаться от ультрафиолета, тем более длинноволнового, все же не стоит, ведь солнечные лучи в умеренном количестве весьма полезны и даже необходимы для нормального функционирования человеческого организма.