Бактерий возникает. Положительный анализ и бактериальные инфекции. Почему представителей царства бактерии относят к прокариотам

Царство «Бактерии» состоит из бактерий и сине-зеленых водорослей, общая характеристика которых заключается в малой величине и отсутствии разделенного мембраной от цитоплазмы ядра.

Кто такие бактерии

В переводе с греческого «bakterion» – палочка. Большей частью, микробы – это невидимые невооруженным глазом одноклеточные организмы, размножающиеся делением.

Кто их открыл

Впервые увидеть мельчайших одноклеточных в самодельный микроскоп смог исследователь из Голландии, живший в 17 веке, Антони Ван Левенгук. Изучать окружающий мир через увеличительное стекло лупы он начал во время работы в галантерейном магазине.

Антони Ван Левенгук (1632 — 1723)

В дальнейшем Левенгук сосредоточился на изготовлении линз, способных к увеличению до 300 раз. В них он рассматривал мельчайшие микроорганизмы, описывая полученную информацию и перенося увиденное на бумагу.

В 1676 году Левенгук обнаружил и изложил сведения о микроскопических существах, которым дал название «анималькули».

Чем питаются

Мельчайшие микроорганизмы существовали на Земле задолго до появления человека. Они имеют повсеместное распространение, питаясь органической пищей и неорганическими веществами.

По способам усвоения питательных веществ бактерии принято делить на автотрофные и гетеротрофные. Для существования и развития гетеротрофы используют отходы жизнедеятельности, органического разложения живых организмов.

Представители бактерий

Биологами выделено около 2500 групп различных бактерий.

По форме их подразделяют на:

  • кокки, имеющие шарообразные очертания;
  • бациллы – в форме палочки;
  • вибрионы, имеющие изгибы;
  • спириллы – спиральной формы;
  • стрептококки, состоящие из цепочек;
  • стафилококки, образующие грозди, напоминающие виноградные.

По степени влияния на организм человека прокариотов можно разделить на:

  • полезные;
  • вредные.

К опасным для человека микробам относятся стафилококки и стрептококки, вызывающие гнойные заболевания.

Полезными считаются бактерии бифидо, ацидофилус, стимулирующие иммунитет и защищающие желудочно-кишечный тракт.

Как размножаются настоящие бактерии

Размножение всех видов прокариотов происходит в основном делением, с последующим ростом до исходной величины. Достигая определенного размера, взрослый микроорганизм распадается на две части.

Реже воспроизведение себе подобных одноклеточных выполняется почкованием и коньюгацией. При почковании на материнском микроорганизме вырастает до четырех новых клеток, с последующим отмиранием взрослой части.

Коньюгация считается простейшим половым процессом у одноклеточных. Чаще таким способом размножаются бактерии, обитающие в животных организмах.

Бактерии симбионты

Микроорганизмы, участвующие в пищеварении в кишечнике человека, это яркий пример бактерий симбионтов. Впервые симбиоз был открыт голландским микробиологом Мартином Виллемом Бейеринком. В 1888 году он доказал взаимовыгодное тесное сожительство одноклеточных и растений бобовых.

Обитая в корневой системе, симбионты, питаясь углеводами, снабжают растение атмосферным азотом. Таким образом, бобовые повышают плодородие, не обедняя почву.

Известно множество успешных симбиотических примеров с участием бактерий и:

  • человека;
  • водорослей;
  • членистоногих;
  • морских животных.

Микроскопические одноклеточные оказывают помощь системам человеческого организма, способствуют очищению сточных вод, участвуют в круговороте элементов и работают на достижение общих целей.

Почему бактерии выделяют в особое царство

Для этих организмов характерны мельчайшие размеры, отсутствие оформленного ядра и исключительное строение. Поэтому, несмотря на внешнее сходство, их нельзя отнести к эукариотам, обладающим оформленным клеточным ядром, ограниченным от цитоплазмы оболочкой.

Благодаря всем особенностям в XX веке ученые выделили их в отдельное царство.

Самые древние бактерии

Мельчайшие одноклеточные считаются первой зародившейся жизнью на Земле. Исследователи в 2016 году обнаружили в Гренландии сохранившиеся в погребенном состоянии цианобактерии возрастом около 3,7 миллиарда лет.

В Канаде найдены следы микроорганизмов, живших примерно 4 миллиарда лет назад в океане.

Функции бактерий

В биологии между живыми организмами и средой обитания бактерии выполняют следующие функции:

  • переработка органических веществ в минеральные;
  • фиксация азота.

В жизни человека одноклеточные микроорганизмы играют важную роль с первых минут рождения. Они обеспечивают сбалансированную микрофлору кишечника, оказывают влияние на иммунитет, занимаются поддержанием водно-солевого баланса.

Запасное вещество бактерий

Запасные питательные вещества у прокариота скапливаются в цитоплазме. Их накапливание происходит в благоприятных условиях, а потребляется в период голодания.

К запасным веществам бактерий относятся:

  • полисахариды;
  • липиды;
  • полипептиды;
  • полифосфаты;
  • отложения серы.

Главный признак бактерий

Функцию ядра у прокариота выполняет нуклеоид.

Поэтому главным признаком бактерий является сосредоточение наследственного материала в одной хромосоме.

Почему представителей царства бактерии относят к прокариотам

Отсутствие оформленного ядра послужило причиной отнесения бактерий к прокариотным организмам.

Как бактерии переносят неблагоприятные условия

Микроскопические прокариоты способны длительное время переносить неблагоприятные условия, превращаясь в споры. Происходит потеря воды клеткой, значительное уменьшение объема и изменение формы.

Споры становятся нечувствительны к механическим, температурным и химическим воздействиям. Таким образом сохраняется свойство жизнеспособности и осуществляется эффективное расселение.

Заключение

Бактерии – древнейшая форма жизни на Земле, известная задолго до появления человека. Они присутствуют повсеместно: в окружающем воздухе, воде, в поверхностном слое земной коры. Местом обитания служат растения, животные, человек.

Активное изучение одноклеточных началось в XIX веке и продолжается по сей день. Данные организмы являются основной частью повседневной жизни людей и оказывают непосредственное влияние на существование человека.

Бактерии – мельчайшие живые организмы, которые населяют нашу планету. Чего не имеют крошечные бактерии? Внушительного размера. Заметить их без микроскопа невозможно, но их желание жить поистине поражает. Один тот факт, что бактерии при благоприятных условиях могут сохраняться в «летаргическом сне» сотни лет, вызывает уважение. Какие же особенности строения помогают этим крошкам жить так долго?

Основные черты строения бактериальной клетки

Прокариоты выделены учеными в отдельное царство в силу того, что они имеют специфическое клеточное строение. Сюда относятся:

  • бактерии;
  • сине-зеленые водоросли;
  • риккетсии;
  • микоплазмы.

Отсутствие четко оформленных стенок ядра является главной особенностью представителей царства прокариотов. Поэтому центром генетической информации является единственная кольцевая молекула ДНК, которая прикреплена к клеточной мембране.

Чего же еще нет в клеточном строении бактерий?

  1. Ядерной оболочки.
  2. Митохондрий.
  3. Пластид.
  4. Рибосомальной ДНК.
  5. Эндоплазматического ретикулюма.
  6. Комплекса Гольджи.

Однако отсутствие всех этих составляющих не мешает вездесущим микроорганизмам находиться в центре природного обмена веществ. Они фиксируют азот, вызывают брожение, окисляют неорганические вещества.

Надежная защита

Природа позаботилась о том, чтобы обеспечить защиту малышам: снаружи бактериальная клетка окружена плотной оболочкой. Клеточная стенка свободно осуществляет обмен веществ. Она пропускает питательные вещества внутрь и выводит продукты жизнедеятельности наружу.

Оболочка определяет форму тела бактерии:

  • шаровидные кокки;
  • изогнутые вибрионы;
  • палочковидные бациллы;
  • спириллы.

Для предохранения от высыхания вокруг клеточной стенки образуется капсула, которая состоит из плотного слоя слизи. Толщина стенок капсулы может превышать диаметр бактериальной клетки в несколько раз. Плотность стенок варьируется в зависимости от условий окружающей среды, в которые попадает бактерия.

Генетический фонд в безопасности

Четко оформленного ядра, которое бы содержало ДНК, у бактерий нет. Но это не значит, что генетическая информация у микроорганизмов без ядерной оболочки имеет хаотичное расположение. Нитевидная двойная спираль ДНК уложена аккуратным клубком в центре клетки.

Молекулы ДНК содержат наследственный материал, который является центром по запуску процессов размножения микроорганизмов. А еще бактерии оснащены, как стенкой, специальной защитной системой, которая помогает отражать атаки вирусных ДНК. Противовирусная система работает на поражение чужеродной ДНК, а вот собственная при этом не повреждается.

Благодаря наследственной информации, которая записана в ДНК, происходит размножение бактерий. Размножаются микроорганизмы делением. Скорость, с которой эти крошки способны делиться, впечатляет: каждые 20 минут их количество увеличивается вдвое! В благоприятных условиях они способны образовывать целые колонии, а вот нехватка питательных веществ негативно влияет на увеличение численности бактерий.

Чем наполнена клетка

Бактериальная цитоплазма является хранилищем питательных веществ. Это густая субстанция, которая снабжена рибосомами. Под микроскопом в цитоплазме можно различить скопления органических и минеральных веществ.

В зависимости от функциональности бактерий количество клеточных рибосом может достигать десятков тысяч. Рибосомы имеют специфическую форму, стенки которой лишены какой-либо симметрии и достигают диаметра 30 нм.

Рибосомы получили своей название благодаря рибонуклеиновым кислотам (РНК). При размножении именно рибосомы воспроизводят генетическую информацию, записанную в ДНК.

Рибосомы стали центром, который руководит процессом биосинтеза белка. Благодаря биосинтезу неорганические вещества превращаются в биологически активные. Процесс проходит в 4 этапа:

  1. Транскрипция. Происходит образование рибонуклеиновых кислот из двойных нитей ДНК.
  2. Транспортировка. Созданные РНК транспортируют аминокислоты в рибосомы в качестве исходного материала для синтеза белка.
  3. Трансляция. Рибосомы сканируют информацию и строят полипептидные цепи.
  4. Формирование белка.

Ученые до сих пор не изучили детально строение и функциональность клеточных рибосом у бактерий. Их полная структура еще не известна. Дальнейшая работа в области исследования рибосом даст полную картину о том, как работает молекулярная машина по синтезу белка.

Что не предусмотрено в бактериальной клетке

В отличие от других живых организмов в строении бактериальных клеток не предусмотрены многие клеточные структуры. Но в их цитоплазме присутствуют органоиды, которые с успехом выполняют функции митохондрий или комплекса Гольджи.

Огромное количество митохондрий найдено в эукариотах. Они составляют примерно 25% всего клеточного объема. Митохондрии отвечают за выработку, хранение и распределение энергии. ДНК митохондрий представляют собой циклические молекулы и собраны в специальные кластеры.

Стенки митохондрий состоят из двух мембран:

  • наружная, имеющая гладкие стенки;
  • внутренняя, от которой вглубь отходят многочисленные кристы.

Прокариоты снабжены своеобразными батарейками, которые, подобно митохондриям, снабжают их энергией. Например, очень интересно ведут себя такие «митохондрии» в дрожжевых клетках. Для успешной жизнедеятельности им нужен углекислый газ. Поэтому в условиях, когда СО2 недостаточно, митохондрии исчезают из тканей.

Под микроскопом можно рассмотреть аппарат Гольджи, который присущ исключительно эукариотам. Впервые он был обнаружен в нервных клетках итальянским ученым Камилло Гольджи в 1898 году. Этот органоид играет роль уборщика, т. е. удаляет из клетки все продукты обмена веществ.

Аппарат Гольджи имеет дисковидную форму, которая состоит из плотных мембранных цистерн, связанных пузырьками.

Функции аппарата Гольджи достаточно разнообразны:

  • участие в секреторных процессах;
  • формирование лизосом;
  • доставка продуктов обмена веществ до клеточной стенки.

Древнейшие жители Земли убедительно доказали, что, несмотря на отсутствие многих клеточных органоидов, они достаточно жизнеспособны. Природа подарила ядерным организмам ядро, митохондрии, аппарат Гольджи, но это совершенно не означает, что маленькие бактерии уступят им свое место под солнцем.

Бактерии представляют собой одноклеточные организмы, лишенные хлорофилла. Эта группа микроорганизмов наиболее многочисленна, широко распространена в природе и хорошо изучена. Среди бактерий имеется значительное число возбудителей инфекционных заболеваний человека и животных.

Форма и размеры бактерий. По форме клеток бактерии разделяются на шаровидные — кокки; палочковидные или цилиндрические — собственно бактерии; извитые— вибрионы и спириллы. Между основными формами имеются переходные. Различные формы бактерий показаны на рис. 1.

Кокки (от греч. coccus— зерно, ягода) различаются между собой в зависимости от расположения клеток после их деления. Одиночные кокки называются микрококками (рис. 1,1), парные — диплококками. Если кокки после деления не расходятся, а образуют цепочку, их называют стрептококками (рис. 1,3). Все эти кокки делятся только в одной плоскости. При делении в двух взаимно перпендикулярных плоскостях могут образоваться сочетания из четырех кокков — тетракокки (рис. 1,6), а при делении в трех взаимно перпендикулярных плоскостях — сарцины (от лат. sarcio — связывать; рис. 1,7), состоящие из 8—16 клеток. Если деление происходит без определенного порядка, кокки остаются вместе и образуют скопления, напоминающие грозди винограда, — стафилококки (рис.1,2). Обычно размеры кокков достигают 1—1,5 мкм.

Среди кокков имеются возбудители различных заболеваний человека: диплококки-пневмококки (рис. 1,5), мейингококки и гонококки (рис. 1,4) вызывают соответственно воспаление легких, менингит и гонорею; стафилококки и стрептококки — различные гнойные заболевания человека и животных. Многие кокки являются обитателями различных полостей и кожи человека и широко распространены во внешней среде.

Палочковидные бактерии (от греч. bacteria— палочка) имеют цилиндрическую форму и обычно располагаются одиночно (рис. 1,8—9), но иногда попарно (диплобактерии) или в виде цепочек (стрептобактерии). Палочки могут быть прямыми, слегка изогнутыми и веретенообразными; размеры их достигают 1—5x0,5— 1 мкм. Палочки, не образующие спор, называют бактериями, а спорообразующие — бациллами (аэробы) и клостридиями (анаэробы). Под воздействием различных факторов форма и величина бактерий могут меняться. Способность бактерий изменять свою форму и величину называется полиморфизмом.

Среди бактерий много возбудителей инфекционных заболеваний: чумы, сибирской язвы, бруцеллеза, столбняка, газовой гангрены, дифтерии, кишечных инфекций.

Извитые формы бактерий имеют вид спирали, состоящей из нескольких завитков. Среди них различают вибрионы, имеющие один завиток (рис. 1, 10), и спириллы с 2—3 завитками (рис. 1, 11).

Вибрионы — слабоизогнутые клетки, напоминающие запятую, длиной 1—3 мкм, очень подвижные за счет жгутика, расположенного на конце клетки. Среди вибрионов наибольшее значение имеет возбудитель холеры.
Спириллы — безвредные микроорганизмы, живущие в сточных или загрязненных водах, гниющих отбросах. Только Spirillum minus вызывает у человека болезнь укуса крысы—содоку.

Структура бактерий. Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны и цитоплазмы, которая содержит ядерное вещество, различные органеллы и включения. Кроме того, у многих бактерий имеются капсула и слизистый слой, жгутики и пили (рис. 2).


Клеточная стенка. Оболочка, которая отделяет микробную клетку от окружающей среды, определяет и сохраняет ее форму, получила название клеточной стенки (рис. 3). Она характеризуется прочностью, эластичностью и гибкостью. Клеточная стенка выполняет жизненно важную функцию: предохраняет клетку от осмотического лизиса, так как давление внутри клетки в цитоплазме выше, чем в окружающей среде. Обладая избирательной проницаемостью, клеточная стенка обеспечивает прохождение внутрь клетки различных веществ и выведение наружу продуктов обмена. Через клеточную стенку легко проникают вода, глюкоза, аминокислоты, жирные кислоты, имеющие молекулы небольших размеров. Более крупные молекулы органических веществ не могут проникнуть внутрь клетки без предварительного расщепления их на более мелкие с помощью ферментов, выделяемых клеткой.

Клеточная стенка бактерий имеет сложную структуру и построена из компонентов двух типов. Прочность и твердость клеточной стенке придает сеть микрофибрилл, которая погружена в содержимое — матрикс. Микрофибриллы являются гликопептидами (пептидогликаны, или муреины). Слой гликопептидов определяет и сохраняет форму бактериальной клетки. Структура и химический состав клеточных стенок грамположительных и грамотрицательных бактерий различны.

Клеточная стенка грамположительных бактерий имеет наиболее простое строение. Структура ее однородна, она толще (10—15 нм), чем клеточная стенка грамотрицательных бактерий. Основная масса клеточной стенки — гликопептиды (до 90%). Сеть микрофибрилл погружена в матрикс, содержащий полисахариды (до 90%) и тейхоевые кислоты. Белки обычно отсутствуют, а липиды составляют всего 2,5%. Однако некоторые грамположительные бактерии, например коринебактерии и микобактерии, содержат в клеточной стенке большое количество липидов.

Клеточная стенка грамотрицательных бактерий имеет сложное строение и по химическому составу значительно отличается от клеточных стенок грамположительных бактерий. Внутренний слой клеточной стенки — тонкий мешочек молекул гликопептида, состоящий из одного или двух молекулярных слоев (2—3 нм). Поверх него лежит широкий внешний слой (7—8 нм) из неплотно упакованных молекул белка и фосфолипидов, над которым располагается третий слой — липополисахариды. Возможна и другая структура внешнего слоя клеточной стенки: в двойной слой фосфолипидов включены белки и липополисахариды.

В клеточной стенке этих бактерий много липидов (до 25%), белка и полисахаридов.

Цитоплазматическая мембрана. Непосредственно под клеточной стенкой расположена цитоплазматическая мембрана, очень плотно прилегающая к ней (рис.4). Цитоплазматическая мембрана имеет большое значение в жизни клетки. Она действует как осмотический барьер, концентрируя внутри клетки питательные вещества и способствуя выведению продуктов обмена. Через нее проходят частицы, имеющие молекулы небольших размеров (фрагменты ДНК, белки с низкой молекулярной массой— внеклеточные ферменты). Белки цитоплазматической мембраны — пермеазы выполняют функцию транспорта — переноса органических и неорганических веществ в клетку. Дитоплазматическая мембрана является местом биосинтеза некоторых составных частей клетки, принимает участие в процессах деления бактерий. На внутренней поверхности ее находятся специальные участки, к которым прикрепляется ДНК в процессе ее удвоения (репликации). Рост мембраны обеспечивает разделение генома клетки после завершения процесса репликации. У аэробных бактерий в цитоплазматической мембране находится цепочка переноса электронов, обеспечивающих энергетический обмен клетки.

Цитоплазматическая мембрана очень тонка (не более 8—10 нм). На электронных микрофотографиях она видна как двойная линия, разделенная светлым промежутком (трехслойная). Более половины массы цитоплазматической мембраны составляют белки и 20—30% — фосфолипиды. Цитоплазматическая мембрана бактерий имеет структуру элементарной биологической мембраны — двойного слоя фосфолипидов, на поверхности которых расположены белки.
При некоторых воздействиях на бактериальную клетку, например при помещении ее в гипертонический раствор хлорида натрия, мембрана может отделиться от клеточной стенки и стать хорошо видимой (см. рис. 3).

Цитоплазма. Содержимое бактериальной клетки — ограниченное цитоплазматической мембраной прозрачное, слегка вязкое вещество жидкой консистенции. Цитоплазма клеток бактерий является коллоидальной системой, состоящей из воды, протеинов, жиров, углеводов, различных минеральных и других веществ, соотношения которых варьируют в зависимости от вида бактерий и возраста клетки.
В цитоплазме бактерии находятся ядро клетки — нуклеоид, рибосомы, мезосомы, а также различные гранулы запасных питательных веществ, пигменты, жиры.

Нуклеоид. Содержит ДНК, которая связана с небольшим количеством специфического основного белка— гистона (нуклеопротеид) и является хранителем наследственной информации в клетке. В отличие от ядер других микроорганизмов, например простейших, нуклеоид бактерий не имеет ясно выраженной мембраны, ограничивающей его от остальной части цитоплазмы (см. рис. 4). Молекула ДНК по схеме, предложенной в 1953 г. Уотсоном и Криком, состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой наподобие винтовой лестницы (рис. 5). Наружную поверхность такой двойной спирали образует сахар — дезоксирибоза (С), которая чередуется с остатками фосфорной кислоты (Ф). Внутри спирали перпендикулярно к ее оси, как ступеньки лестницы, расположены плоские молекулы азотистых оснований: пурины — аденин (А), гуанин (Г) и пиримидины — тимин (Т), цитозин (Ц). Каждый пурин вследствие своей химической структуры обязательно соединен с пиримидином, поэтому нить ДНК имеет равномерную толщину, около 0,2 нм, на всем протяжении. Длина молекулы ДНК может быть в сотни миллионов раз больше. Например, общая длина хромосомы кишечной палочки 1— 1,4 мм.Пурины и пиримидины соединены между собой водородными связями, которые легко разрываются. Каждое азотистое основание прикреплено только к сахару наружной цепи — дезоксирибозе. Дезоксирибоза, фосфат и азотистое основание образуют один мономер ДНК, называемый нуклеотидом (Н). Для ДНК многих бактерий характерна кольцевая структура в виде замкнутого кольца. У большинства прокариотов только одна бактериальная хромосома.

Рибосомы. Помимо ДНК, в клетке есть вторая нуклеиновая кислота — рибонуклеиновая (РНК), которая в отличие от ДНК состоит из одной цепи, имеет сахар рибозу вместо дезоксирибозы и урацил вместо тимина. Основная масса РНК связана с белком в форме маленьких частиц, или рибосом, которые являются центрами синтеза белка. Рибосомы образуют большие агрегаты, называемые полирибосомами, или полисомами, состоящими из 7—8 рибосом и более. Химический состав рибосом: 40—60% РНК и 60—40% белка. У бактерий рибосомы свободно лежат в цитоплазме. Количество их в каждой клетке может быть более 100. Помимо рибосомальной РНК (рРНК), в цитоплазме бактерии находится еще информационная РНК (иРНК, или мРНК). Она осуществляет функцию переноса генетической информации от ДНК к полисомам. У кишечной палочки она составляет 2— 4 % от всей РНК. Третья рибонуклеиновая кислота — транспортная (тРНК)—выполняет функцию транспортировки в рибосомы аминокислот, необходимых для синтеза белка.

Мезосомы. У некоторых бацилл из цитоплазматической мембраны возникают сферические, закрученные в завиток структуры — так называемые мезосомы. Функция их пока не совсем ясна. Возможно, они участвуют в процессе деления клетки или в окислительно-восстановительных процессах, выполняя роль митохондрий.

Гранулы. В цитоплазме бактерий находятся различные гранулы, многие из которых содержат запасные питательные вещества. Источником углерода или энергии служат гранулы безазотистых органических веществ — полисахариды, состоящие из молекул глюкозы. Одни гранулы состоят из крахмала и окрашиваются йодом в синий цвет (иогены или гранулеза), другие содержат гликоген и окрашиваются йодом в красновато-коричневый цвет. Сернистые бактерии накапливают в цитоплазме капельки серы, некоторые бактерии синтезируют и накапливают липидные включения, которые видны в форме мелких капель благодаря большой степени их преломления.

У некоторых микробов в цитоплазме находятся зерна волютина, впервые обнаруженные у спирилл (Spirillum volutans). Они являются запасными питательными веществами, состоящими из неорганических полифосфатов и соединений, близких к нуклеиновым кислотам. Волютин в виде крупных гранул накапливается в цитоплазме бактерий при выращивании их на средах, содержащих углеводы. Зерна волютина при окраске их метиленовым синим обнаруживают явления метахромазии: синяя краска придает им ярко-красный цвет. У некоторых бактерий, например коринебактерий, обнаружение зерен волютина является ценным диагностическим признаком.

Капсула и слизистый слой. У многих бактерий с наружной стороны клеточной стенки расположен диффузный гомогенный слизистый слой различной толщины (см. рис. 2,1). Этот слой можно выявить при определенных способах окраски или соответствующем освещении.

Капсулой называют слой, который сохраняет тесную связь с клеточной стенкой и служит внешним покровом клетки. Толщина его ограничена, и капсула четко выявляется при негативном окрашивании по методу Гинса: на темном фоне препарата видна окрашенная в красный цвет бактериальная клетка, окруженная бесцветной капсулой. Толщина капсул у бактерий различна: от долей микрометра до 10 мкм. Капсулу величиной менее 0,2 мкм часто называют микрокапсулой. Поверхностные структуры типа капсул описаны у пневмококков, возбудителей сибирской язвы, коклюша, гонореи, группы капсульных бактерий — клебсиелл. У многих видов бактерий капсула появляется лишь при определенных условиях, часто неблагоприятных. Возбудители сибирской язвы, коклюша, гонореи, пневмококки образуют капсулу, попадая в организм человека или животного. В этом случае капсула выполняет защитную роль, предохраняя микроб от действия антител, фагоцитов и других защитных факторов организма. Группа капсульных бактерий сохраняет капсулу постоянно: и в организме человека, и пр,и культивировании на питательных средах. Химический состав капсул зависит от вида бактерий. Основными компонентами капсулы являются вода (до 98%) и полисахариды. В капсуле сибиреязвенных бацилл найдены полипептиды, а в капсуле стрептококка — белок М.

Слизистые слои, образующиеся вокруг поверхности некоторых бактерий, отличаются от капсул более рыхлым строением, толщиной, способностью частично отделяться от образовавшей их клетки. Материал, составляющий слизистый слой, часто обнаруживают в питательной среде, в которой культивируют микроорганизмы.

Защитные функции капсулы разнообразны. Помимо предохранения микроба от действия защитных факторов макроорганизма, капсула предохраняет микроб от притока в клетку большого количества жидкости (осмотический барьер), а также от высыхания при неблагоприятных условиях среды обитания.

Жгутики. Некоторые бактерии обладают подвижностью, которая осуществляется с помощью жгутиков. Число и расположение жгутиков являются характерным видовым признаком бактерий, который используют для дифференциации микроорганизмов. По расположению и числу жгутиков различают бактерии: монотрихи, имеющие один жгутик на одном из полюсов клетки; амфитрихи, у которых на каждом полюсе расположено по одному жгутику; лофотрихи — с пучком жгутиков на одном полюсе (сюда же относят бактерии, которые имеют пучки жгутиков на обоих полюсах), и перитрих и, жгутики у которых расположены по всей поверхности тела (рис. 6).

Жгутики представляют собой тонкие, спиральные, нитевидные фибриллы толщиной 12—18 нм. Длина жгутика может в 10 раз превышать длину самой бактерии. Жгутик отходит от специального образования — базального тельца, расположенного в цитоплазме на внутренней поверхности цитоплазматической мембраны (рис. 7). Базальное тельце имеет сложное строение, в нем находится механизм в виде двух кольцевых пластинок, вращение которых относительно друг друга сообщает движение жгутику.


Жгугики бактерий — белковые нити, состоящие из белка флагеллина, белковые мономеры которого собраны в спиральные цепи, закрученные вокруг полой сердцевины. При движении жгутик вращается вокруг своей длинной оси по или против часовой стрелки. Движение бактерий можно увидеть при исследовании их в живом состоянии с помощью метода висячей или раздавленной капли и при использовании специальных способов окраски в световом микроскопе. Скорость активного движения с помощью жгутиков у некоторых бактерий очень велика: за 1 с они могут пересечь расстояние, в 20 раз превышающее их длину. Механическое удаление приводит к потере подвижности бактерий, но не препятствует их росту и размножению.

Пили (ворсинки). Прямые нитевидные образования, обнаруженные у сальмонелл, эшерихий, протея, называют ворсинками, а также бахромками, фимбриями, ресничками, пилями (рис. 8). Пили тоньше жгутиков бактерий и короче их; состоят из особого белка пилина, мономеры которого, как и у жгутиков, расположены по спирали. Пили различаются по диаметру и длине; толщина пилёй может быть от 4—10 до 35 нм. Количество пил ей на одну бактериальную клетку может достигать нескольких сотен. Пили обеспечивают способность бактерий к прилипанию (адгезия) друг к другу или к субстрату, например к эпителиальным клеткам слизистой оболочки кишечника.


Некоторые пили, например F-ворсинки, выполняют половые функции у бактерий. Они обеспечивают передачу наследственного материала (ДНК) из одной бактериальной клетки в другую, образуя мостик между двумя клетками. Эти ворсинки шире и длиннее остальных и на конце имеют шаровидное утолщение.

Споры. Некоторые бактерии, попадая в неблагоприятные условия существования, образуют внутри тела спору (эндоспора). Эндоспора представляет собой внутриклеточное, сильно преломляющее свет образование, устойчивое (резистентное) к различным вредным факторам внешней среды: высыханию, действию высоких температур, химических и дезинфицирующих веществ (рис. 9).

Спорообразование свойственно преимущественно палочковидным формам бактерий: бациллам и клостридиям. У бактерий других видов оно встречается очень редко. Споры имеют сферическую, овальную или эллипсоидную форму. Диаметр споры обычно равен диаметру клетки, в которой она образуется, или несколько превышает его, а длина споры составляет 1/4-1/3 длины клетки бактерии. Размер и положение внутри бактериальной клетки зависят от вида, возраста и условий выращивания бактерий. Споры могут располагаться в центре клетки — центрально (рис. 9,1), как, например, у возбудителя сибирской язвы; ближе к концу — субтерминально, у возбудителя газовой гангрены (рис. 9,3); на самом конце — терминально, у возбудителя столбняка и ботулизма (рис. 9,2). Форма и расположение споры в бактериальной клетке могут быть отличительными признаками некоторых возбудителей: например, столбнячная палочка имеет круглую спору, расположенную на конце бактерии, и похожа на барабанную палочку, а ботулиническая палочка — овальную спору также на конце бактериальной клетки и напоминает теннисную ракетку. Созревшая спора имеет сложную структуру.

Процесс спорообразования происходит при попадании бактерии в неблагоприятные условия (недостаток питательных веществ, воды, большое содержание кислорода, действие высоких и низких температур и т. д.). Спорообразование начинается с появления «спорогенной зоны»: в бактериальной клетке образуется уплотненный участок, где наблюдается обособление ядерного материала и части цитоплазмы с помощью тонкой перегородки. По мере развития и созревания споры закладываются ее стенки, число и толщина которых варьируют у разных видов бактерий (стадия проспоры). Затем проспора уплотняется, уменьшается в объеме, превращается в зрелую спору, которая окружена плотной многослойной оболочкой, состоящей в основном из белков, липидов и гликопептидов. Весь процесс спорообразования длится 18—24 ч. По химическому составу споры отличаются высоким содержанием липидов, солей кальция; вода в споре находится в связанном с другими соединениями состоянии. Эти особенности спор и обусловливают их высокую устойчивость к различным факторам: кипячению, действию высоких и низких температур, высушиванию, ультрафиолетовому облучению и т. д. При попадании в благоприятные условия существования (наличие питательных веществ, достаточной влажности и оптимальной температуры) спора прорастает в вегетативную форму: она набухает, в оболочке появляется отверстие, через которое вытягивается росток, превращающийся затем в палочку. Весь процесс длится 4—5 ч.

Одной клетке соответствует только одна спора, поэтому спорообразование у бактерий не связано с процессом размножения, как у грибов, а является лишь способом переживания в неблагоприятных условиях внешней среды.

Спорообразующие микробы широко распространены в почве, воздухе, сохраняясь там десятки лет. Среди них встречаются патогенные виды — бациллы сибирской язвы, возбудители газовой гангрены, столбняка и ботулизма.

Сферопласты и протопласты. Бактериальная клетка в определенных условиях может быть лишена клеточной стенки. Эту стенку можно разрушить действием лизоцима или пенициллина, который нарушает синтез гликопептидов. Бактерии, целиком лишенные клеточной стенки, называются протопластами, а при сохранении небольших участков ее—сферопластами. Эти образования покрыты тонкой и нежной цитоплазматической мембраной и имеют сферическую форму. Цитоплазматическая мембрана неспособна сдержать высокое осмотическое давление цитоплазмы, поэтому для сохранения жизнеспособности сферопласты и протопласты помещают в специально осмотически уравновешенные среды, содержащие 5—20% сахарозы и сыворотку лошади. В этих средах они сохраняют округлую форму, а некоторые —даже жгутики. Однако такие протопласты неподвижны вследствие нарушения у них механизмов, управляющих движением жгутиков. Спустя некоторое время после хранения сферопластов и протопластов в растворах сахарозы они начинают разрушаться (лизируются) и в среде появляются мелкие зерна и пустые пузырьки — «тени» протопластов. При определенных условиях сферопласты, частично сохраняющие клеточную стенку, могут размножаться на плотных питательных средах и реверсировать (возвращаться) в исходные формы, что сближает их с нестабильными L-формами бактерий типа В.

L-формы бактерий. При частичном или полном разрушении клеточных стенок многие виды бактерий могут образовывать L-формы. Впервые они были обнаружены Клинебергер-Нобель в 1935 г. Название их происходит от первой буквы института Листера (L), в котором они были открыты.

Характерным для L-форм бактерий является их сходство с микроорганизмами группы плевропневмонии крупного рогатого скота (PPLO), которые отнесены в настоящее время к микоплазмам. Однако L-формы отличает от микоплазм то, что им несвойственна потребность в питательных веществах, в которых нуждаются микоплазмы. Генетически L-формы идентичны исходным формам, из которых они получены. У некоторых из них частично сохранена клеточная стенка (L-формы типа В), поэтому они могут превращаться в исходные формы бактерий. Образование L-форм происходит под «действием пенициллина, который нарушает синтез мукопептидов клеточной стенки. Иногда эти формы возникают спонтанно.

По морфологии L-формы разных видов бактерий и других микроорганизмов (трепонемы, дрожжи) сходны между собой. Они представляют шаровидные, вакуолизи- рованные образования величиной от 1—8 мкм до мельчайших— 250 нм, способных, как и вирусы, проходить через поры фарфоровых фильтров. Однако в отличие от вирусов L-формы можно выращивать на искусственных питательных средах, добавляя к ним пенициллин, сахара, лошадиную сыворотку. При удалении из такой среды пенициллина L-формы (тип В) вновь превращаются в. исходные формы бактерий. Этот процесс называется реверсией. Однако существуют стабильные L-формы бактерий (тип А), возвращение которых к исходной форме затруднено или невозможно. В настоящее время получены L-формы протея, кишечной палочки, холерного вибриона, бруцелл, возбудителей газовой гангрены, столбняка и других микроорганизмов.

Бактерии - это очень маленькие, невероятно древние и в какой-то степени довольно простые микроорганизмы. Согласно современной классификации их выделили в отдельный домен организмов, что говорит о значительном отличии бактерий от прочих форм жизни.

Бактерии являются самыми распространенными и соответственно самыми многочисленными живыми организмами, они без преувеличения вездесущи и прекрасно себя чувствуют в любой среде: воде, воздухе, земле, а также внутри других организмов. Так в одной капле воды их количество может достигать нескольких миллионов, а в теле человека их примерно в десятеро больше, чем всех наших клеток.

Кто такие бактерии?

Это микроскопические, преимущественно одноклеточные организмы, главным отличием которых является отсутствие клеточного ядра. Основа клетки, цитоплазма содержит в себе рибосомы и нуклеоид, выступающий генетическим материалом бактерий. От внешнего мира все это отделяет цитоплазматическая мембрана или плазмалемма, которая в свою очередь покрыта клеточной стенкой и более плотной капсулой. У некоторых типов бактерий есть внешние жгутики, их количество и размеры могут сильно отличаться, но предназначение всегда одинаковое - с их помощью бактерии передвигаются.

Структура и содержимое бактериальной клетки

Какими бывают бактерии?

Формы и размеры

Формы у различных типов бактерий весьма вариативны: они могут быть округлыми, палочковидными, извитыми, звёздчатыми, тетраэдрическими, кубическими, C- или O-образными, а также неправильными.

Размерами бактерии разнятся еще сильнее. Так, Mycoplasma mycoides - малейший вид во всем царстве имеет длину 0,1 - 0,25 микрометров, а самая крупная бактерия Thiomargarita namibiensis достигает 0,75 мм - ее видно даже не вооруженным взглядом. В среднем размеры колеблются от 0,5 до 5 мкм.

Метаболизм или обмен веществ

В вопросах получения энергии и питательных веществ бактерии проявляют чрезвычайное разнообразие. Но в то же время их довольно просто обобщить, разделив на несколько групп.

По способу получения питательных веществ (углеродов) бактерии делятся на:
  • автотрофы - организмы, способные самостоятельно синтезировать все необходимые им для жизнедеятельности органические вещества;
  • гетеротрофы - организмы, способные трансформировать только уже готовые органические соединения, и поэтому нуждающиеся в помощи других организмов, которые бы им эти вещества вырабатывали.
По способу получения энергии:
  • фототрофы - организмы, вырабатывающие необходимую энергию в результате фотосинтеза
  • хемотрофы - организмы, вырабатывающие энергию путем проведения различных химических реакций.

Как размножаются бактерии?

Рост и размножение у бактерий тесно связаны. Достигнув определенного размера, они начинают размножаться. У большинства видов бактерий этот процесс может протекать чрезвычайно быстро. Деление клеток, например, может проходить быстрее 10 минут, при этом количество новых бактерий будет расти в геометрической прогрессии, поскольку каждый новый организм будет делится на два.

Выделяют 3 различных типа размножения:
  • деление - одна бактерия делится на две абсолютно генетически идентичные.
  • почкование - на полюсах материнской бактерии формируется одна или несколько почек (до 4-х), при этом материнская клетка стареет и умирает.
  • примитивный половой процесс - часть ДНК родительских клеток переносится в дочернюю, при этом появляется бактерия с принципиально новым набором генов.

Первый тип наиболее распространенный и быстрый, последний - невероятно важный, причем не только для бактерий, но и для всей жизни в целом.

Говоря о бактериях, чаще всего мы представляем нечто негативное. А между тем знаем мы о них очень мало. Строение и жизнедеятельность бактерий достаточно примитивны, но это, по предположениям некоторых ученых, самые древнейшие обитатели Земли, и за столько лет они не исчезли и не вымерли. Многие виды таких микроорганизмов человек использует для своего блага, другие же являются причиной серьезных заболеваний и даже эпидемий. Но вред одних бактерий порой не соизмерим с пользой других. Давайте поговорим об этих удивительных микроорганизмах и познакомимся с их строением, физиологией и классификацией.

Царство бактерий

Это безъядерные, чаще всего одноклеточные микроорганизмы. Их открытие в 1676 году - заслуга голландского ученого А. Левенгука, который впервые разглядел крошечные бактерии под лупой микроскопа. А вот изучать их природу, физиологию и роль в жизни человека впервые начал французский химик и микробиолог Луи Пастер в 1850-х годах. Строение бактерии стало активно исследоваться с появлением электронных микроскопов. Ее клетка состоит из цитоплазматической мембраны, рибосомы и нуклеотида. ДНК бактерии сосредоточена в одном месте (нуклеоплазме) и представляет собой клубок из тонких нитей. Цитоплазма отделена от клеточной стенки цитоплазматической мембраной, в ней находятся нуклеотид, различные мембранные системы, клеточные включения. Рибосома бактерии состоит на 60% из РНК, остальное - белок. На фото ниже изображено строение сальмонеллы.

Клеточная стенка и ее компоненты

Бактерии имеют клеточное строение. Стенка клетки обладает толщиной около 20 нм и, в отличие от высших растений, не имеет фибриллярной структуры. Ее прочность обеспечивается специальным покровом, называемым мешком. Он состоит преимущественно из полимерного вещества - муреина. Его компоненты (субъединицы) соединены в определенной последовательности в особые полигликановые тяжи. Они совместно с короткими пептидами образуют макромолекулу, напоминающую сеть. Это и есть муреиновый мешок.

Органы передвижения

Эти микроорганизмы способны к активному передвижению. Осуществляется оно за счет плазматических жгутиков, имеющих винтообразное строение. Бактерии могут передвигаться со скоростью до 200 мкм в секунду и оборачиваться вокруг своей оси за секунду 13 раз. Способность жгутиков к движению обеспечивается специальным сократительным белком - флагеллином (аналог миозина в мышечных клетках).

Размеры они имеют следующие: длина - до 20 мкм, диаметр - 10-20 нм. Каждый жгутик отходит от базального тельца, которое погружено в оболочку клетки бактерии. Органы передвижения могут быть единичными или располагаться целыми пучками, как, например, у спириллы. Количество жгутиков может зависеть от условий внешней среды. Например, Протеус вульгарис при бедном питании имеет всего два субполярных жгутика, тогда как при нормальных условиях развития в пучках их может быть от 2 до 50.

Движение микроорганизмов

Строение бактерии (схема ниже) таково, что она может достаточно активно передвигаться. Движение в большинстве случаев происходит за счет толчка и осуществляется в основном в жидкой или влажной среде. В зависимости от действующего фактора, другими словами - вида внешнего раздражителя, оно может представлять собой:

  • хемотаксис - это направленное движение бактерии к питательным веществам или, напротив, от каких-либо токсинов;
  • аэротаксис - движение к кислороду (у аэробов) или от него (у анаэробов);
  • фототаксис - реакция на свет, проявляющаяся в движении, характерна прежде всего для фототрофов;
  • магнитотаксис - реакция на изменения в магнитном поле, объясняется наличием у некоторых микроорганизмов специальных частиц (магнетосом).

Одним из перечисленных способов бактерии, особенности строения клетки которых позволяют им передвигаться, могут создавать скопления в местах с оптимальными условиями для их жизнедеятельности. Кроме жгутиков, некоторые виды имеют многочисленные более тонкие нити - их называют "фимбрии" или "пили", но их функция в достаточной мере еще не изучена. Бактерии, которые не имеют специальных жгутиков, способны к скользящему движению, правда, оно характеризуется очень низкой скоростью: примерно 250 мкм в минуту.

Вторая малочисленная группа бактерий - автотрофы. Они способны синтезировать из неорганических веществ органические, частично могут усваивать атмосферный углекислый газ и являются хемотрофами. Эти бактерии занимают весьма важное место в круговороте химических элементов в природе.

Также существуют две группы настоящих фототрофов. Особенности строения бактерий этой категории заключаются в том, что они содержат вещество (пигмент) бактериохлорофилл, родственное по природе растительному хлорофиллу, а так как у них отсутствует фотосистема II, фотосинтез протекает без выделения кислорода.

Размножение делением

Основной способ размножения - это деление исходной материнской клетки надвое (амитоз). У форм, имеющих вытянутую форму, это всегда происходит перпендикулярно продольной оси. Строение бактерии претерпевает при этом кратковременные изменения: от края клетки к середине образуется поперечная перегородка, по которой затем и разделяется материнский организм. Это объясняет старое название царства - Дробянки. Клетки после деления могут оставаться соединенными в неустойчивые, рыхлые цепочки.

Вот такие можно выделить отличительные особенности строения бактерий некоторых видов, например, стрептококков.

Спорообразование и половое размножение

Второй способ размножения - спорообразование. Оно напрямую сопряжено со стремлением приспособиться к неблагоприятным условиям и направлено на то, чтобы их пережить. У некоторых палочковидных бактерий споры образуются эндогенно, то есть внутри клетки. Они очень устойчивы к нагреванию и могут сохраняться даже при длительном кипячении. Образование спор начинается с различных химических реакций в материнской клетке, при этом разлагается около 75% всех ее белков. Затем происходит деление. При этом образуются две дочерние клетки. Одна из них (меньшая) покрывается толстой оболочкой, которая по объему может занимать до 50% - это и есть спора. Она сохраняет жизнеспособность и готовность к прорастанию в течение 200-300 лет.

Некоторые виды способны к половому размножению. Впервые этот процесс открыли в 1946 году, когда изучали строение клетки бактерии Эшерихия коли. Оказалось, что возможен частичный перенос генетического материала. То есть фрагменты ДНК передаются от одной клетки (донора) к другой (реципиенту) в процессе конъюгации. Осуществляется это при помощи бактериофагов или путем трансформации.

Строение бактерии и особенности ее физиологии таковы, что в идеальных условиях процесс деления происходит постоянно и очень быстро (каждые 20-30 минут). Но в естественной среде он ограничен различными факторами (солнечным светом, питательной средой, температурой и др.).

В основу классификации этих микроорганизмов положено различное строение клеточной стенки бактерий, которое обуславливает сохранение анилинового красителя в клетке или его вымывание. Это было выявлено Х. К. Грамом, а впоследствии, в соответствии с его именем были выделены два больших отдела микроорганизмов, о которых мы поговорим ниже.

Грамположительные бактерии: особенности строения и жизнедеятельности

Эти микроорганизмы имеют многослойный муреиновый покров (30-70% от всей сухой массы клеточной стенки), благодаря чему из клеток не вымывается анилиновый краситель (на фото выше слева схематично изображено строение грамположительной бактерии, а справа - грамограмотрицательной). Их особенностью является и то, что диаминопимелиновая кислота часто заменяется лизином. Содержание белка значительно меньше, а полисахариды отсутствуют или связаны ковалентными связями. Все бактерии этого отдела разделены на несколько групп:

  1. Грамположительные кокки. Они представляют собой одиночные клетки или группы по две, четыре и более клеток (до 64), скрепленных между собой целлюлозой. По типу питания это, как правило, облигатные или факультативные анаэробы, например, молочнокислые бактерии из семейства Стрептококковые, но могут быть и аэробы.
  2. Неспорообразующие палочки. По названию уже можно понять строение клетки бактерии. К этой группе относят анаэробные или факультативно аэробные молочнокислые виды из семейства Лактобациллы.
  3. Спорообразующие палочки. Они представлены всего одним семейством - Клостридии. Это облигатные анаэробы, способные образовывать споры. Многие из них формируют характерные цепочки или нити из отдельных клеток.
  4. Коринеморфные микроорганизмы. Внешнее строение клетки бактерии этой группы может значительно меняться. Так, палочки могут становиться булавовидными, короткими, кокками или слабо разветвленными формами. Эндоспоры они не образуют. К ним относятся пропионовокислые, стрептомицетовые бактерии и т. д.
  5. Микоплазмы. Если обратить внимание на строение бактерии (схема на рисунке ниже - стрелка указывает на цепочку ДНК), то можно отметить, что она не имеет клеточной стенки (вместо нее есть цитоплазматическая мембрана) и, следовательно, не окрашивается анилиновым красителем, поэтому ее нельзя отнести к данному отделу на основании окрашивания по Граму. Но согласно последним исследованиям микоплазмы произошли от грамположительных микроорганизмов.

Грамотрицательные бактерии: функции, строение

У таких микроорганизмов сеть муреина очень тонкая, ее доля от сухой массы всей клеточной стенки составляет всего лишь 10%, остальная часть - это липопротеины, липополисахариды т. д. Вещества, поступающие при окрашивании по методу Грама, легко вымываются. По типу питания грамотрицательные бактерии - фототрофы или хемотрофы, некоторые виды способны к фотосинтезу. Классификация внутри отдела находится в процессе формирования, различные семейства объединяют в 12 групп, исходя из особенностей морфологии, обмена веществ и других факторов.


Значение бактерий для человека

Несмотря на свою, казалось бы, незаметность, бактерии имеют огромное значение для человека, как положительное, так и отрицательное. Производство многих пищевых продуктов невозможно без участия отдельных представителей этого царства. Строение и жизнедеятельность бактерий позволяют получать нам многие молочные продукты (сыры, йогурты, кефир и многое другое). Эти микроорганизмы участвуют в процессах квашения, брожения.

Многочисленные виды бактерий являются возбудителями болезней у животных и человека, таких как сибирская язва, столбняк, дифтерия, туберкулез, чума и т. д. Но в то же время микроорганизмы участвуют в различных промышленных производствах: это генная инженерия, получение антибиотиков, ферментов и других белков, искусственное разложение отходов (например, метановое сбраживание сточных вод), обогащение металлов. Некоторые бактерии растут на субстратах, богатых нефтепродуктами, и это служит индикатором при поиске и разработке новых месторождений.